
NFT Marketplace Security Audit
Introduction

Audit Overview
We were tasked with performing an audit of the 10101 Art codebase and in particular their
NFT collection creation mechanism and associated exchange and presale contracts.
Over the course of the audit, we identified a significant flaw in the way signature recovery
behaves in the codebase as well as multiple minor misbehaviours across the codebase.
We advise the 10101 Art team to closely evaluate all minor-and-above findings identified in
the report and promptly remediate them as well as consider all optimizational exhibits
identified in the report.

Post-Audit Conclusion
The 10101 Art team iterated through all findings within the report and provided us with a
revised commit hash to evaluate all exhibits on.
We evaluated all alleviations performed by 10101 Art and have identified that certain exhibits
have not been adequately dealt with. We advise the 10101 Art team to revisit the following
exhibits: WCF-01M, WCF-01C, ERT-01M, EOH-01M, ERC-02S, TPY-01M, PEL-05C, PEL-04C,
PEL-03C, PEL-01M, MMR-01M, MMR-03M

Contracts Assessed
Files in Scope Repository Commit(s)

Address.sol (ASS) smart-contracts 94c500b26d,
72bec452a7

Airdrop.sol (APO) smart-contracts 94c500b26d,
72bec452a7

BytesLibrary.sol (BLY) smart-contracts 94c500b26d,
72bec452a7

ERC721Factory.sol (ERC) smart-contracts 94c500b26d,
72bec452a7

ExchangeState.sol (ESE) smart-contracts 94c500b26d,
72bec452a7

ExchangeDomain.sol (EDN) smart-contracts 94c500b26d,
72bec452a7

ERC721Collection.sol (ERN) smart-contracts 94c500b26d,
72bec452a7

ERC20TransferProxy.sol (ERT) smart-contracts 94c500b26d,
72bec452a7

ExchangeOrdersHolder.sol (EOH) smart-contracts 94c500b26d,
72bec452a7

HasSecondarySaleFees.sol (HSS) smart-contracts 94c500b26d,
72bec452a7

MarketMaker.sol (MMR) smart-contracts 94c500b26d,
72bec452a7

OwnableExt.sol (OET) smart-contracts 94c500b26d,
72bec452a7

Presale.sol (PEL) smart-contracts 94c500b26d,
72bec452a7

SafeMath.sol (SMH) smart-contracts 94c500b26d,
72bec452a7

TransferProxy.sol (TPY) smart-contracts 94c500b26d,
72bec452a7

UintLibrary.sol (ULY) smart-contracts 94c500b26d,
72bec452a7

WhitelistContractFilter.sol (WCF) smart-contracts 94c500b26d,
72bec452a7

Audit Synopsis
Severity Identified Alleviated Partially

Alleviated
Acknowledged

6 2 1 3

42 38 3 1

11 7 2 2

2 2 0 0

0 0 0 0

During the audit, we filtered and validated a total of 11 findings utilizing static analysis tools as
well as identified a total of 50 findings during the manual review of the codebase. We strongly
recommend that any minor severity or higher findings are dealt with promptly prior to the project's
launch as they can introduce potential misbehaviours of the system as well as exploits.

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests and scripts
coded in JavaScript.
To compile the project, the compile command needs to be issued via the npx CLI tool to hardhat:
BASH
npx hardhat compile
The hardhat tool automatically selects Solidity version 0.8.9 based on the version specified within the
hardhat.config.js file.
The project contains discrepancies with regards to the Solidity version used as the pragma
statements of the contracts are open-ended (^0.8.0).

We advise them to be locked to 0.8.9 (=0.8.9), the same version utilized for our static analysis as well
as optimizational review of the codebase.
During compilation with the hardhat pipeline, no errors were identified that relate to the syntax or
bytecode size of the contracts.

Static Analysis

The execution of our static analysis toolkit identified 149 potential issues within the codebase of
which 112 were ruled out to be false positives or negligible findings.
The remaining 37 issues were validated and grouped and formalized into the 11 exhibits that
follow:

ID Severity Addressed Title

ERN-01S Inexistent Event Emission

ERN-02S Inexistent Sanitization of Input Address

ERC-01S Inexistent Event Emissions

ERC-02S Inexistent Sanitization of Input Addresses

MMR-01S Inexistent Event Emissions

MMR-02S Inexistent Sanitization of Input Addresses

OET-01S Inexistent Event Emissions

PEL-01S Improper Invocations of EIP-20 transfer / transferFrom

ULY-01S Illegible Numeric Value Representation

WCF-01S Inexistent Event Emissions

WCF-02S Redundant Variable Assignment

Manual Review

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/ERC721Collection-ERN#ERN-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/ERC721Collection-ERN#ERN-02S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/ERC721Factory-ERC#ERC-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/ERC721Factory-ERC#ERC-02S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/MarketMaker-MMR#MMR-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/MarketMaker-MMR#MMR-02S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/OwnableExt-OET#OET-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/Presale-PEL#PEL-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/UintLibrary-ULY#ULY-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/WhitelistContractFilter-WCF#WCF-01S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/static-analysis/WhitelistContractFilter-WCF#WCF-02S
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions
and vulnerabilities in 10101 Art's exchange and presale contract.
As the project at hand implements an EIP-721 and EIP-20 exchange, intricate care was put into
ensuring that the flow of funds & assets within the system conforms to the specifications and
restrictions laid forth within the protocol's specification.
We validated that all state transitions of the system occur within sane criteria and that all
rudimentary formulas within the system execute as expected. We pinpointed an important
vulnerability within the system's signature recovery module which could have had moderate
ramifications to its overall operation.
Additionally, the system was investigated for any other commonly present attack vectors such as
re-entrancy attacks, mathematical truncations, logical flaws and ERC / EIP standard
inconsistencies. The documentation of the project was satisfactory to a certain extent, however, we
strongly recommend it to be expanded at certain complex points such as the various administrative
functions that significantly centralize the project and appear unjustified.
A total of 50 findings were identified over the course of the manual review of which 15 findings
concerned the behaviour and security of the system. The non-security related findings, such as
optimizations, are included in the separate Code Style chapter.
The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

BLY-01M Insecure Elliptic Curve Signature Recovery
Mechanism

ERT-01M Centralized Nature of Token Approvals

ERN-01M Arbitrary Burn Operation

ERN-02M Potential Out of Gas Denial Attack

ERN-03M Potentially Insufficient Override of ERC721A
Functions

EOH-01M Inexistent Sanitization of Order

EOH-02M Weak Existence Validation

MMR-01M Arbitrary Approval Consumption

MMR-02M Incorrect Payable Function Attribute

MMR-03M Potentially Insecure Order Signature Validation

https://eips.ethereum.org/
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/BytesLibrary-BLY#BLY-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/ERC20TransferProxy-ERT#ERT-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/ERC721Collection-ERN#ERN-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/ERC721Collection-ERN#ERN-02M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/ERC721Collection-ERN#ERN-03M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/ExchangeOrdersHolder-EOH#EOH-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/ExchangeOrdersHolder-EOH#EOH-02M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/MarketMaker-MMR#MMR-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/MarketMaker-MMR#MMR-02M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/MarketMaker-MMR#MMR-03M

PEL-01M Inexistent Protection of State Transitions

PEL-02M Inexistent Sanitization of Collection Creation

TPY-01M Centralized Nature of NFT Approvals

ULY-01M Outdated Strings Dependency Excerpt

WCF-01M Incorrect Contract Removal Guards

Code Style

During the manual portion of the audit, we identified 35 optimizations that can be applied to the
codebase that will decrease the operational cost associated with the execution of a particular
function and generally ensure that the project complies with the latest best practices and standards
in Solidity.
Additionally, this section of the audit contains any opinionated adjustments we believe the code
should make to make it more legible as well as truer to its purpose.
These optimizations are enumerated below:

ID Severity Addressed Title

ASS-01C Outdated OpenZeppelin Dependency

APO-01C Duplicate Application of Modifier

APO-02C Event Practicality Enhancements

APO-03C Inefficient Administrative Mint Workflow

APO-04C Inefficient mapping Lookups

APO-05C Loop Iterator Optimizations

BLY-01C Misleading Library Name

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/Presale-PEL#PEL-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/Presale-PEL#PEL-02M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/TransferProxy-TPY#TPY-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/UintLibrary-ULY#ULY-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/manual-review/WhitelistContractFilter-WCF#WCF-01M
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Address-ASS#ASS-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Airdrop-APO#APO-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Airdrop-APO#APO-02C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Airdrop-APO#APO-03C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Airdrop-APO#APO-04C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Airdrop-APO#APO-05C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/BytesLibrary-BLY#BLY-01C

ERT-01C Non-Standard Usage of Function Signature Literals

ERN-01C Loop Iterator Optimization

ERN-02C Redundant Conditional Structure

EDN-01C Generic Typographic Mistake

EDN-02C Potential Data Structure Optimization

EOH-01C Suboptimal Struct Declaration Style

ESE-01C Discrepant Key Encoding Mechanism

HSS-01C Event Practicality Enhancement

HSS-02C Non-Standard Literal Definition of EIP-165 ID

MMR-01C Non-Standard Definition of Unitary Maximum

MMR-02C Non-Standard Literal Definition of EIP-165 ID

MMR-03C Redundant Function Arguments

MMR-04C Redundant Numeric Enum Comparison

MMR-05C Redundant Payable Address Casts

MMR-06C Variable Mutability Specifier (Immutable)

OET-01C Inconsistent State Transition Restrictions

PEL-01C Duplicate Application of Modifier

PEL-02C Generic Typographic Mistake

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ERC20TransferProxy-ERT#ERT-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ERC721Collection-ERN#ERN-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ERC721Collection-ERN#ERN-02C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ExchangeDomain-EDN#EDN-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ExchangeDomain-EDN#EDN-02C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ExchangeOrdersHolder-EOH#EOH-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/ExchangeState-ESE#ESE-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/HasSecondarySaleFees-HSS#HSS-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/HasSecondarySaleFees-HSS#HSS-02C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/MarketMaker-MMR#MMR-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/MarketMaker-MMR#MMR-02C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/MarketMaker-MMR#MMR-03C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/MarketMaker-MMR#MMR-04C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/MarketMaker-MMR#MMR-05C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/MarketMaker-MMR#MMR-06C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/OwnableExt-OET#OET-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-02C

PEL-03C Inefficient Data Pointers

PEL-04C Inefficient mapping Lookups

PEL-05C Inexistent Specification of Override

PEL-06C Loop Iterator Optimization

PEL-07C Redundant Conditional Structure

SMH-01C Incorrect Usage of Dependency

WCF-01C Inefficient mapping Lookups

WCF-02C Loop Iterator Optimizations

WCF-03C Redundant Duplication of Code

WCF-04C Simplification of Ternary Operators

STATIC ANALYSIS
ERC721Collection Static Analysis Findings
ERN-01S: Inexistent Event Emission

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-03C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-04C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-05C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-06C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/Presale-PEL#PEL-07C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/SafeMath-SMH#SMH-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/WhitelistContractFilter-WCF#WCF-01C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/WhitelistContractFilter-WCF#WCF-02C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/WhitelistContractFilter-WCF#WCF-03C
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/code-style/WhitelistContractFilter-WCF#WCF-04C

Recommendation:

We advise an event to be declared and correspondingly emitted to ensure off-chain processes can
properly react to this system adjustment.
Alleviation:
A ChangingWhitelistContractFilter event has been introduced to the codebase and is correspondingly
emitted in the ERC721Collection::setWhitelistContractFilter function, ensuring off-chain processes can
adequately react to such an event.

Description:
The linked function accepts an address argument yet does not properly sanitize it.

Impact:

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/ERC721Collection.sol#L53-L60

The presence of zero-value addresses, especially in constructor implementations, can cause the
contract to be permanently inoperable. These checks are advised as zero-value inputs are a
common side-effect of off-chain software related bugs.

Recommendation:
We advise some basic sanitization to be put in place by ensuring that the address specified is
non-zero.
Alleviation:
The input address of the ERC721Collection::setWhitelistContractFilter function is now adequately
sanitized as non-zero, alleviating this exhibit.

ERC721Factory Static Analysis Findings
ERC-01S: Inexistent Event Emissions

Type Severity Location

Language Specific ERC721Factory.sol:L22-L30

Description:
The linked functions adjust sensitive contract variables yet do not emit an event for it.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/ERC721Collection.sol#L53-L60
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific

Recommendation:
We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.
Alleviation:
Proper events have been introduced for all referenced variables, ensuring off-chain processes can
adequately respond to their adjustment.

ERC-02S: Inexistent Sanitization of Input Addresses
Type Severity Location

Input Sanitization ERC721Factory.sol:L22-L30, L34-L40, L44-L50, L54-L67

Description:
The linked function(s) accept address arguments yet do not properly sanitize them.

Impact:
The presence of zero-value addresses, especially in constructor implementations, can cause the
contract to be permanently inoperable. These checks are advised as zero-value inputs are a
common side-effect of off-chain software related bugs.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#input-sanitization

Example:

Recommendation:
We advise some basic sanitization to be put in place by ensuring that each address specified is
non-zero.

Alleviation:
While the input arguments of the ERC721Factory::constructor are now adequately sanitized, other
referenced instances by the exhibit do not apply adequate sanitization rendering this exhibit partially
alleviated.

MarketMaker Static Analysis Findings
MMR-01S: Inexistent Event Emissions

Type Severity Location

Language Specific MarketMaker.sol:L75-L89, L93-L95, L99-L104,
L107-L109, L112-L117

Description:
The linked functions adjust sensitive contract variables yet do not emit an event for it.

Impact:
93|95|94

Recommendation:
We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/ERC721Factory.sol#L22-L30
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific

Alleviation:
All referenced instances of variable adjustments are now accommodated by an event emission,
ensuring off-chain processes can adequately react to their adjustment.

MMR-02S: Inexistent Sanitization of Input Addresses
Type Severity Location

Input Sanitization MarketMaker.sol:L75-L89, L93-L95, L99-L104, L107-L109, L112-L1

Description:
The linked function(s) accept address arguments yet do not properly sanitize them.
Impact:
The presence of zero-value addresses, especially in constructor implementations, can cause the
contract to be permanently inoperable. These checks are advised as zero-value inputs are a
common side-effect of off-chain software related bugs.

Recommendation:
We advise some basic sanitization to be put in place by ensuring that each address specified is
non-zero.
Alleviation:
All referenced instances of address variables are now adequately sanitized as non-zero, ensuring
the contract cannot be misconfigured and alleviating this exhibit.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#input-sanitization

OwnableExt Static Analysis Findings
OET-01S: Inexistent Event Emissions

Type Severity Location

Language Specific OwnableExt.sol:L32-L34, L39-L45

Description:
The linked functions adjust sensitive contract variables yet do not emit an event for it.

Recommendation:
We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.
Alleviation:
All referenced instances of variable adjustments are now accommodated by an event emission,
ensuring off-chain processes can adequately react to their adjustment.

Presale Static Analysis Findings
PEL-01S: Improper Invocations of EIP-20 transfer / transferFrom

Type Severity Location

Standard Conformity Presale.sol:L127, L129, L200, L254

Description:
The linked statements do not properly validate the returned bool values of the EIP-20 standard
transfer & transferFrom functions. As the standard dictates, callers must not assume that false is
never returned.
Impact:
If the code mandates that the returned bool is true, this will cause incompatibility with tokens such as
USDT / Tether as no such bool is returned to be evaluated causing the check to fail at all times. On
the other hand, if the token utilized can return a false value under certain conditions but the code
does not validate it, the contract itself can be compromised as having received / sent funds that it
never did.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20#token

Recommendation:
Since not all standardized tokens are EIP-20 compliant (such as Tether / USDT), we advise a safe
wrapper library to be utilized instead such as SafeERC20 by OpenZeppelin to opportunistically
validate the returned bool only if it exists in each instance.
Alleviation:
All referenced instances of EIP-20 transfer functions have been replaced by their safe-prefixed
counterparts, alleviating this exhibit in full.

UintLibrary Static Analysis Findings
ULY-01S: Illegible Numeric Value Representation

Type Severity Location

Code Style UintLibrary.sol:L36

Description:
The linked representation of a numeric literal is sub-optimally represented decreasing the legibility
of the codebase.

Recommendation:
To properly illustrate the value's purpose, we advise the following guidelines to be followed. For
values meant to depict fractions with a base of 1e18, we advise fractions to be utilized directly (i.e.
1e17 becomes 0.1e18) as they are supported. For values meant to represent a percentage base, we
advise each value to utilize the underscore (_) separator to discern the percentage decimal (i.e.
10000 becomes 100_00, 300 becomes 3_00 and so on). Finally, for large numeric values we simply
advise the underscore character to be utilized again to represent them (i.e. 1000000 becomes
1_000_000).
Alleviation:
The underscore (_) character has been properly introduced to the referenced literal clearly denoting
that it is expected to represent 100% with up to two decimal places of accuracy (100_00).

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

WhitelistContractFilter Static Analysis Findings
WCF-01S: Inexistent Event Emissions

Type Severity Location

Language Specific WhitelistContractFilter.sol:L67-L74, L76-L82

Description:
The linked functions adjust sensitive contract variables yet do not emit an event for it.

Recommendation:
We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.
Alleviation:
Proper events have been introduced for all referenced variables, ensuring off-chain processes can
adequately respond to their adjustment.

WCF-02S: Redundant Variable Assignment
Type Severity Location

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific

Gas Optimization WhitelistContractFilter.sol:L20

Description:
The linked variable is assigned to redundantly to the default value of the relevant data type (i.e.
uint256 assigned to 0, address assigned to address(0) etc.).

Recommendation:
We advise the assignment to be safely omitted optimizing the codebase.
Alleviation:
The redundant variable assignment has been omitted, optimizing the contract's deployment cost.

BytesLibrary Manual Review Findings
BLY-01M: Insecure Elliptic Curve Signature Recovery Mechanism

Type Severity Location

Language Specific BytesLibrary.sol:L12-L22

Description:
The ecrecover function is a low-level cryptographic function that should be utilized after appropriate
sanitizations have been enforced on its arguments, namely on the s and v values. This is due to the
inherent trait of the curve to be symmetrical on the x-axis and thus permitting signatures to be
replayed with the same x value (r) but a different y value (s).
Impact:
Should the payload being verified by the signature rely on differentiation based on the s or v
arguments, it will be possible to replay the signature for the same data validly and acquire
authorization twice. Additionally, if the aliveUntilSigner member in MarketMaker is zero the
MarketMaker::validateAliveUntilSig function can be bypassed by an arbitrary invalid signature being
provided for the order payload.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific

Recommendation:
We advise them to be sanitized by ensuring that v is equal to either 27 or 28 (v∈ {27, 28}) and to
ensure that s is existent in the lower half order of the elliptic curve (0 < s < secp256k1n ÷ 2 + 1) by
ensuring it is less than
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A1. A reference
implementation of those checks can be observed in the ECDSA library of OpenZeppelin and the
rationale behind those restrictions exists within Appendix F of the Yellow Paper. As a final point,
the code should also evaluate that the result of ecrecover is not zero as that is the value returned for
invalid signatures.
Alleviation:
The relevant file of the exhibit has been removed from the codebase rendering it no longer
applicable.

ERC20TransferProxy Manual Review Findings
ERT-01M: Centralized Nature of Token Approvals

Type Severity Location

Centralization Concern ERC20TransferProxy.sol:L19, L39

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.3.2/contracts/utils/cryptography/ECDSA.sol#L162-L167
https://ethereum.github.io/yellowpaper/paper.pdf
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#centralization-concern

Description:
The erc20safeTransfer / erc20safeTransferFrom functions permit an execution of transfer / transferFrom
instructions for the contract's administrators which are controlled entirely by the contract's owner.

Recommendation:
We advise the ownership structure of the contract to be revised and potentially made autonomous
by eliminating ownership once the administrators necessary for the 10101 Art system to function
have been defined.

Alleviation:
The ownable structure has been removed entirely from the ERC20TransferProxy contract, rendering it
insecure as any approval to it can be arbitrarily consumed. We advise the ownership structure to be
reverted. To note, we advised the ownership structure to be renounced once the administrators
have been set; not to omit ownership entirely.

ERC721Collection Manual Review Findings
ERN-01M: Arbitrary Burn Operation

Type Severity Location

Centralization Concern ERC721Collection.sol:L79-L81

Description:
The code of ERC721Collection permits its administrators to arbitrarily burn token IDs from its users
without validating any approval.
Example:

Recommendation:
We advise the burn functionality to be omitted from the code as it appears to not be in use
throughout the 10101 Art ecosystem. Alternatively, we advise an approval to be validated between
the owner of the token ID and the caller of the function to ensure burn operations are authorized.
Alleviation:
The ERC721Collection::burn function has been omitted as advised.

ERN-02M: Potential Out of Gas Denial Attack
Type Severity Location

Language Specific ERC721Collection.sol:L96-L108

Description:
The burnAll function is meant to iterate through all minted IDs and emit a Transfer event for each to
signal that it has been burned. Given that a block has a limited gas limit, it may be impossible to
invoke burnAll if many tokens have been minted.
Impact:

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#centralization-concern
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/ERC721Collection.sol#L79-L81
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific

A user can presently detect whether a collection is to-be-burned and purchase a significant amount
of tokens from the Presale contract to prohibit the burn operation from succeeding.
Example:

Recommendation:
We advise the code to instead set the isBurnt variable immediately and to consequently emit the
Transfer events in sequence, permitting the user to pause the sequence and resume it at a
secondary transaction. In turn, this will guarantee that regardless of the amount of token IDs minted
the collection will be burnable and the events emittable albeit potentially in multiple transactions.
Alleviation:
The code of ERC721Collection::burnAll was updated to accept a new amount argument that denotes
the number of NFTs that should be burned in the transaction. As the isBurnt variable is set
immediately and is in use throughout the contract's transfer-related functions, we consider this
exhibit adequately alleviated as the function will resume at the point it left off in the previous
invocation as advised.

ERN-03M: Potentially Insufficient Override of ERC721A
Functions

Type Severity Location

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/ERC721Collection.sol#L85-L109

Standard Conformity ERC721Collection.sol:L127-L131

Description:
The ERC721Collection contract is meant to apply transfer control checks to the target as well as about
whether the collection has been burnt, however, this is inadequately applied.
Impact:
While the current implementation is adequate for ERC721A implementations of version 4 and up, it
would not have properly behaved in versions 3 and below. As such, the _beforeTokenTransfers hook
should be adequately overridden to ensure the code behaves consistently across ERC721A
versions.
Example:

Recommendation:
We advise the code to also override the _beforeTokenTransfers implementation instead to ensure that
all public-facing functions properly disallow transfer of assets when the collection is burnt as well as
when the recipient is not sufficiently approved by the whitelist mechanism. As a final note, the code
should also override the totalSupply and balanceOf functions of ERC721A to yield 0 if the collection has
been burned as they will presently yield misleading values.
Alleviation:
The ERC721Collection::_beforeTokenTransfers function that has been overridden now properly applies
approval checks to the recipient via the ERC721Collection::checkApproval function as advised,
ensuring the correct checks are applied in all types of transfers performed with the EIP-721 asset.

ExchangeOrdersHolder Manual Review Findings
EOH-01M: Inexistent Sanitization of Order

Type Severity Location

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#standard-conformity
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/ERC721Collection.sol#L216-L226
https://eips.ethereum.org/EIPS/eip-721

Input Sanitization ExchangeOrdersHolder.sol:L24

Description:
The order that is being registered in the system remains unsanitized.
Impact:
An abnormal fee will cause the order to be unfulfillable due to unserviceable fees.
Example:

Recommendation:
We advise the order.fee to be mandated as at most equivalent to 100_00, the limit expected by the
UintLibrary::bp implementation.
Alleviation:
The 10101 Art team has opted to not apply a remediation for this exhibit instead acknowledging it.

EOH-02M: Weak Existence Validation
rity ion

al Fault angeOrdersHolder.sol:L42-L53

Description:
The exists function of ExchangeOrdersHolder is highly sensitive and is meant to be utilized by
MarketMaker::exchange to validate that the owner of an order has authorized a sale.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#input-sanitization
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#logical-fault

Impact:
Although the possibility of a collision is negligible, the code does not validate who created an order
which is a counter-intuitive approach to validating an order's presence.
Example:

Recommendation:
We advise the code of exists to also validate and store the order.owner to the params of a particular
key, ensuring that even if a key collision is artificially crafted the owner will still be the authorizing
party of the sale.
Alleviation:
The owner is now validated as being equivalent in both the params and order.key entry, alleviating
this exhibit.

MarketMaker Manual Review Findings
MMR-01M: Arbitrary Approval Consumption

Type Severity Location

Centralization Concern MarketMaker.sol:L155

Description:
The exchange function permits an administrator to set arbitrary buyer members and thus consume
arbitrary approvals of users when performing an exchange.
Impact:
Administrators are currently able to tap into the approvals of any party to the exchange, potentially
compromising their assets.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#centralization-concern

Recommendation:
We advise the code to prohibit such an action, only permitting the buyer to be the msg.sender. As an
additional point, this change would allow the buyer argument to be omitted entirely as it would no
longer be in use.
Alleviation:
The 10101 Art team has specified that this is part of their business requirements and that they wish
to be able to provide an arbitrary buyer argument to the function to fulfil an exchange. The
responsible party (admin) would be an authorized member of the 10101 Art team and thus is meant
to act as a trustworthy entity in the 10101 Art system. As a result, we consider this exhibit
acknowledged given that it represents a desirable business requirement by 10101 Art.

MMR-02M: Incorrect Payable Function Attribute

Type Severity Location

Language Specific MarketMaker.sol:L140

Description:
The referenced function is set as payable yet does not make use of native funds either at rest or per
transaction.
Impact:
It is currently possible for native funds to be permanently locked in the contract if they are sent
alongside an exchange call which is an undesirable trait.

Recommendation:
We advise the payable keyword to be safely omitted from the function's declaration.
Alleviation:
The incorrect payable attribute has been safely omitted as advised.

MMR-03M: Potentially Insecure Order Signature Validation
Type Severity Location

Logical Fault MarketMaker.sol:L206-L207

Description:
The exchange system of MarketMaker validates signature per order creator and not per buyer,
allowing an on-chain race-condition to occur whereby a different buyer can use the same signature
that may have been privately provided by the owner to a single buyer.
Impact:
The system is presently prone to race conditions and can cause a user to not acquire the assets
they hoped for via the exchange function.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#logical-fault

Recommendation:
We advise the signature validation code to also ensure that the buyer is included in the
prepareMessage of validateOrderSig, preventing other users from using the same signature to purchase
a potentially private offer by an owner.
Alleviation:
The 10101 Art team has specified that they wish to retain the current behaviour in place as it
contrasts their intended business requirements. We would like to denote that the finding relates to
sales meant to be consumed by a single buyer, as in a private sale. In such a case, the signature
validation mechanism should ensure that the buyer is also part of the validated payload.
In case the sale has an arbitrary recipient (scenario described by the 10101 Art team), the current
signature validation mechanism can remain in place.

Presale Manual Review Findings
PEL-01M: Inexistent Protection of State Transitions

Type Severity Location

Centralization Concern Presale.sol:L104-L110, L116-L131

Description:
The burnAll and withdraw functions of the contract are meant to permit the administrators to perform
sensitive state transitions, however, no checks are applied to ensure those transitions are correct.
Impact:
The contract does not presently contain any guarantees to its users and permits the administrators
to extract user funds as well as destroy user assets at will.
Example:

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#centralization-concern

Recommendation:
We advise the burnAll function to be invoke-able on a collection only if its sale is in progress,
permitting users to withdraw their funds via returnFunds properly. As a next step, the withdraw function
should be invoke-able per collection rather than per erc20Address and should only extract the funds
that were raised during a collection's sale which need to be tracked. To prevent malicious behaviour,
the withdraw function should not be invoke-able while a sale is in progress (disallowing the
administrators from withdrawing funds and then burning the collection) or when a collection has
been burned (disallowing the administrators from withdrawing funds meant to be refunded to users).
Alleviation:
While the state transitions of the Presale::burnAll and Presale::withdraw functions adequately sanitize
the current state of a sale, they do not impose any limitation on the input _amount thus partially
alleviating this exhibit.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Presale.sol#L104-L110
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Presale.sol#L116-L131

PEL-02M: Inexistent Sanitization of Collection Creation
Type Severity Location

Input Sanitization Presale.sol:L57-L63

Description:
The addCollection does not apply any form of sanitization in its input arguments, permitting incorrect
presale configurations to be created for a collection.
Impact:
Misconfigured presales will fail to function properly and will cause misbehaviours in how funds are
accepted by the contract.
Example:

Recommendation:
We advise the code to properly ensure that the whitelistPrice is lower than the publicPrice, the
startWhitelistTimestamp is less than the stopWhitelistTimestamp which is less than the startPublicTimestamp

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#input-sanitization

that in turn is less than the stopTimestamp. As a final check, the code should also validate that the
erc20Address is non-zero.
Alleviation:
A Presale::_beforeAddCollection hook was introduced that applies all the recommended sanitizations
with an exception to the startWhitelistTimestamp and startPublicTimestamp which should only be
compared between them and not with stopWhitelistTimestamp per the business requirements of 10101
Art. As a result, we consider this exhibit fully alleviated.

TransferProxy Manual Review Findings
TPY-01M: Centralized Nature of NFT Approvals

Type Severity Location

Centralization Concern TransferProxy.sol:L21

Description:
The erc721safeTransferFrom function permits an execution of a safeTransferFrom instruction for the
contract's administrators which are controlled entirely by the contract's owner.

Example:

Recommendation:
We advise the ownership structure of the contract to be revised and potentially made autonomous
by eliminating ownership once the administrators necessary for the 10101 Art system to function
have been defined.
Alleviation:

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#centralization-concern

The ownable structure has been removed entirely from the TransferProxy contract, rendering it
insecure as any approval to it can be arbitrarily consumed. We advise the ownership structure to be
reverted. To note, we advised the ownership structure to be renounced once the administrators
have been set; not to omit ownership entirely.

UintLibrary Manual Review Findings
ULY-01M: Outdated Strings Dependency Excerpt

Type Severity Location

Standard Conformity UintLibrary.sol:L9-L29

Description:
The referenced code represents an excerpt of the Strings library by OpenZeppelin, however, an
outdated one is in use that may also malfunction as its arithmetic statements are meant to be
executed unsafely.

Recommendation:

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#standard-conformity

We advise the latest version of Strings in the OpenZeppelin repository to be consulted and its code
carried over to the UintLibrary to ensure that it behaves as expected.
Alleviation:
The UintLibrary::toString implementation has been updated to the latest one by OpenZeppelin,
greatly optimizing its gas cost.

WhitelistContractFilter Manual Review Findings
WCF-01M: Incorrect Contract Removal Guards

Type Severity Location

Input Sanitization WhitelistContractFilter.sol:L58, L78, L120, L158

Description:
The referenced isContract checks are applied when removing a contract from the whitelist, however,
a contract can pass the isContract when being included and fail it when being excluded if it has been
selfdestruct-ed for example.
Impact:
Presently, entries that may have ephemerally passed the isContract test will not be removable which
is an undesirable trait, especially with contracts such as create2 clones which can be redeployed.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/libs/UintLibrary.sol#L9-L29
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#input-sanitization

Recommendation:
We advise the code to not apply an isContract check when removing an element from the whitelists.
Alleviation:

The WhitelistContractFilter::isContract check was omitted from both inclusions and removals of filters
contrary to what we advised. We advise the contract validation to be re-instated for the
WhitelistContractFilter::addFilterPrivate / WhitelistContractFilter::addFilterPublic functions as they
should still validate the included filter is a contract.

Address Code Style Findings
ASS-01C: Outdated OpenZeppelin Dependency

Type Severity Location

Gas Optimization Address.sol:L7

Description:
The Address dependency in use by the codebase represents an outdated version of the Address
contract by OpenZeppelin.

Recommendation:
We advise the latest version to be utilized as it is more optimal than the one currently in use by the
codebase.
Alleviation:
The relevant file of the exhibit has been removed from the codebase rendering it no longer
applicable.

Airdrop Code Style Findings
APO-01C: Duplicate Application of Modifier

Type Severity Location

Gas Optimization Airdrop.sol:L154

Description:
The checkAddCollection modifier is applied by the isWhitelist function as well as the getTokens function it
is invoked in.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/WhitelistContractFilter.sol#L204-L206
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/WhitelistContractFilter.sol#L35-L47
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/WhitelistContractFilter.sol#L67-L74
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
As isWhitelist represents an internal function, we advise the modifier to be safely omitted from it
optimizing the code's gas cost.
Alleviation:
The Airdrop::isWhitelist function was updated according to our recommendation, no longer applying
redundant access control by omitting the Airdrop::checkAddCollection modifier.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Airdrop.sol#L150-L158
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Airdrop.sol#L40-L46

APO-02C: Event Practicality Enhancements
Type Severity Location

Language Specific Airdrop.sol:L213, L218

Description:
The GetTokens / UpdateWhiteListRoot events do not contain any indexed argument in their current
implementation.

Recommendation:
We advise them to introduce the indexed keyword for the collection member, aiding off-chain services
in filtering events about a particular NFT collection as their queries would execute in less time and
incur a smaller off-chain computational footprint.
Alleviation:
Both events have been updated, introducing the indexed keyword to the collection argument as
advised.

APO-03C: Inefficient Administrative Mint Workflow
Type Severity Location

Gas Optimization Airdrop.sol:L136-L141

Description:
The getTokensAdmin function is meant to circumvent the MerkleProof validation mechanism to directly
mint a collection to a user, however, the function makes use of _getTokens which will still apply the
relevant maximum amount checks.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise the administrative mint workflow to not apply these checks and to directly mint the asset
for the _account, simply emitting the GetTokens event in the process.
Alleviation:
The code was updated as advised, minting the collection directly to the target account and bypassing
any potential limitations that are set by Airdrop::_getTokens.

APO-04C: Inefficient mapping Lookups
erity ation

Optimization op.sol:L175, L181

Description:
The linked statements perform key-based lookup operations on mapping declarations from storage
multiple times for the same key redundantly.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Airdrop.sol#L165-L184
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be
cached wherever possible to a single local declaration that either holds the value of the mapping in
case of primitive types or holds a storage pointer to the struct contained.
Alleviation:
The interim dropTokenAccounts[accountHash] evaluation is now cached to a local variable and
consequently utilized in the two referenced instances of the exhibit, optimizing the code's gas cost.

APO-05C: Loop Iterator Optimizations
erity ation

Optimization op.sol:L135, L194

Description:
The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe
arithmetics(post - 0.8.X).

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise the increment / decrement operations to be performed in an unchecked code block as the
last statement within each for loop to optimize their execution cost.
Alleviation:
All iterator increment statements have been updated, incrementing the iterator within an unchecked
block optimally.

BytesLibrary Code Style Findings
BLY-01C: Misleading Library Name

Type Severity Location

Code Style BytesLibrary.sol:L4

Description:
The BytesLibrary name is misleading as the code of the library contains a recover cryptographic
mechanism.

Recommendation:

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

We advise the library to be aptly renamed properly illustrating what its code contains.
Alleviation:
The relevant file of the exhibit has been removed from the codebase rendering it no longer
applicable.

ERC20TransferProxy Code Style Findings
ERT-01C: Non-Standard Usage of Function Signature Literals

Type Severity Location

Code Style ERC20TransferProxy.sol:L21, L41

Description:
The referenced statements construct a low-level call to the addressToken implementation
representing either a transferFrom(address,address,uint256) or transfer(address,uint256) invocation,
however, this is achieved via the usage of value literals for the signatures.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We advise the IERC20 interface by OpenZeppelin to be imported to the codebase and the special
selector accessor statement to be utilized on its functions in place of the value literal signatures (i.e.
IERC20.transferFrom.selector), optimizing the legibility of the codebase and eliminating the potential for
human error.
Alleviation:
The relevant function selectors from the IERC20 interface are now in use instead of the value literals,
optimizing the code's legibility.

ERC721Collection Code Style Findings
ERN-01C: Loop Iterator Optimization

Type Severity Location

Gas Optimization ERC721Collection.sol:L198

Description:
The linked for loop increments / decrements the iterator "safely" due to Solidity's built-in safe
arithmetics(post - 0.8.X).

Recommendation:
We advise the increment / decrement operation to be performed in an unchecked code block as the
last statement within the for loop to optimize its execution cost.
Alleviation:
The referenced iterator has been optimized as advised, wrapping it in an unchecked code block
during increments.

ERN-02C: Redundant Conditional Structure
Type Severity Location

Gas Optimization ERC721Collection.sol:L217-L223, L225

Description:
The referenced conditional structure will evaluate a condition, return another conditional to the caller
if it succeeds and true otherwise.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise the conditions to be yielded to the caller directly optimizing the code's gas cost by
combining them in their correct format (i.e. checkApproval should yield true if the whitelistContractFilter is
zero or if the isApprovalContractAccount succeeds).
Alleviation:
The conditional structure has been simplified to a direct return statement of a boolean evaluation as
advised.

ExchangeDomain Code Style Findings
EDN-01C: Generic Typographic Mistake

Type Severity Location

Code Style ExchangeDomain.sol:L6

Description:
The referenced line contains a typographical mistake (i.e. private variable without an underscore
prefix) or generic documentational error (i.e. copy-paste) that should be corrected.

Recommendation:
We advise this to be done so to enhance the legibility of the codebase.
Alleviation:
The typographic mistake has been corrected, alleviating this exhibit.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

EDN-02C: Potential Data Structure Optimization
Type Severity Location

Gas Optimization ExchangeDomain.sol:L15, L33, L35

Description:
The data structures of the exchange defined in ExchangeDomain can be optimized as they presently
contain two data points that can be merged into one.

Recommendation:
Presently, an Order struct contains two values indicating the "amount" of an asset that is being sold
or bought, with NFTs being a special case in the Asset declaration whereby a tokenId is specified and
the amount is expected to be equal to type(uint256).max. To avoid redundant data points, the tokenId
member of Asset can be renamed to tokenIdOrAmount, rendering the selling and buying variables in the

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Order redundant as an AssetType of ERC20 would treat the tokenIdOrAmount variable as an amount
whilst an AssetType of ERC721 would treat the tokenIdOrAmount variable as a tokenId.
Alleviation:
The 10101 Art team has specified that they intend to use this data structure in future
implementations to support other standards such as EIP-1155 which would require both a token ID
and an amount to be specified. As a result, we consider this exhibit nullified given that the code
presents the most optimal data structure in light of these future adjustments.

ExchangeOrdersHolder Code Style Findings
EOH-01C: Suboptimal Struct Declaration Style

Type Severity Location

Code Style ExchangeOrdersHolder.sol:L36

Description:
The linked declaration style of a struct is using index-based argument initialization.

Recommendation:
We advise the key-value declaration format to be utilized instead, greatly increasing the legibility of
the codebase.
Alleviation:
The key-value declaration style is now properly utilized in the referenced statement greatly
increasing its legibility.

ExchangeState Code Style Findings
ESE-01C: Discrepant Key Encoding Mechanism

Type Severity Location

Standard Conformity ExchangeState.sol:L49-L56

Description:
The key encoding mechanism in ExchangeState::getCompletedKey differs from the one employed by
ExchangeOrdersHolder::prepareKey in both the mechanism used (abi.encodePacked vs abi.encode) and
the order the arguments are present in the encodings.

https://eips.ethereum.org/EIPS/eip-1155
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#standard-conformity

Recommendation:
We advise the key generation mechanism to be streamlined, potentially in a library, to ensure that
order keys generated within the system are consistent across modules.
Alleviation:
The encoding mechanism of both contracts has been relocated to an Encoding library which exposes
a generateKey function that is in use throughout the system and ensures that the key generation
mechanism is consistent. As such, we consider this exhibit fully alleviated.

HasSecondarySaleFees Code Style Findings
HSS-01C: Event Practicality Enhancement

Type Severity Location

Language Specific HasSecondarySaleFees.sol:L8-L12

Description:
The SecondarySaleFees event does not contain any indexed argument in its current implementation.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#language-specific

Recommendation:
We advise it to introduce the indexed keyword for the tokenId member, aiding off-chain services in
filtering events about a particular NFT ID as their queries would execute in less time and incur a
smaller off-chain computational footprint.
Alleviation:
The referenced event's tokenId argument has been set as indexed, optimizing off-chain filters utilizing
it and alleviating this exhibit.

HSS-02C: Non-Standard Literal Definition of EIP-165 ID
Type Severity Location

Code Style HasSecondarySaleFees.sol:L20

Description:
The referenced statement is accompanied by comments indicating how the interface ID for the
HasSecondarySaleFees contract was generated, however, this is achieved via the usage of literals
rather than code.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We advise the statement and comments to be omitted and the functions of the
HasSecondarySaleFees contract to be clearly defined in an inherited interface. Consequently, the
interface can be imported to the codebase and its interfaceId can be extracted via the type statement
(i.e. for an interface IHasSecondarySaleFees its ID can be extracted via
type(IHasSecondarySaleFees).interfaceId).
Alleviation:

An IHasSecondarySaleFees file has been introduced to the codebase that defines the relevant
functions of the contract and is now in use by the HasSecondarySaleFees::constructor in the syntax
we advised, addressing this exhibit in full.

MarketMaker Code Style Findings
MMR-01C: Non-Standard Definition of Unitary Maximum

Type Severity Location

Code Style MarketMaker.sol:L55

Description:
The referenced calculation is meant to represent the maximum of the uint256 data type, however,
this is achieved via calculations rather than proper code syntax.

Recommendation:
We advise the statement to be replaced by type(uint256).max optimizing the legibility of the code.
Alleviation:
The type(uint256).max syntax is now utilized by the code as advised.

MMR-02C: Non-Standard Literal Definition of EIP-165 ID
Type Severity Location

Code Style MarketMaker.sol:L54

Description:
The referenced statement is meant to represent the interface ID of the HasSecondarySaleFees
contract, however, this is achieved via the usage of a literal rather than code.

Recommendation:
We advise the statement to be replaced akin to the homonym finding in the HasSecondarySaleFees
contract.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/NFT-Marketplace/HasSecondarySaleFees.sol#L22-L24
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Alleviation:
The IHasSecondarySaleFees interface defined for HSS-02C is utilized in the same fashion in this
instance, alleviating this exhibit.

MMR-03C: Redundant Function Arguments
Type Severity Location

Gas Optimization MarketMaker.sol:L317, L345-L349

Description:
The subFeeInBp function is always invoked with the same value and total argument.

Recommendation:
We advise the function to be adjusted to accept a single argument instead, optimizing its gas cost.
Alleviation:
The MarketMaker::subFeeInBp function was updated according to our recommendation, merging the
value and total arguments into the value argument as they were identical when used in the codebase.

MMR-04C: Redundant Numeric Enum Comparison
Type Severity Location

Code Style MarketMaker.sol:L390

Description:
The referenced statement performs an enum comparison by casting them to unitary values
redundantly as the AssetType declaration contains only two enum values.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/NFT-Marketplace/MarketMaker.sol#L345-L351
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We advise the enum value to be evaluated directly as being equal to AssetType.ERC20, significantly
increasing the legibility of the codebase.
Alleviation:
The sellType value is now properly utilized in a comparison as an enum instead of a unit, optimizing
its legibility.

MMR-05C: Redundant Payable Address Casts
Type Severity Location

Code Style MarketMaker.sol:L163-L164, L171-L172, L256-L257,
L272, L297, L307

Description:
The linked statements all utilize the special payable sub-type of the address variable type
redundantly.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We advise all payable casts and relevant usages in the referenced functions to be safely omitted
from the codebase, optimizing its legibility.
Alleviation:
The payable attribute in use throughout the code of the referenced statements has been omitted, no
longer requiring any casts to be performed and thus alleviating this exhibit indirectly.

MMR-06C: Variable Mutability Specifier (Immutable)
Type Severity Location

Gas Optimization MarketMaker.sol:L86

Description:
The linked variable is assigned to only once during the contract's constructor.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise it to be set as immutable greatly optimizing its read-access gas cost.
Alleviation:
A MarketMaker::setExchangeOrdersHolder function has instead been declared, enabling the ordersHolder
member to be adjusted and thus rendering this exhibit no longer applicable.

OwnableExt Code Style Findings
OET-01C: Inconsistent State Transition Restrictions

Type Severity Location

Code Style OwnableExt.sol:L32-L34, L39-L45

Description:
The OwnableExt contract is meant to maintain an admins mapping of multiple users who are
authorized in addition to the owner of the contract. In this mechanism, the deleteAdmin function
behaves strictly and will only permit an administrator being removed only if they existed in the first
place, however, the addAdmin function performs no check to validate whether the _account is already
an administrator.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We recommend the behaviour of the contract to be streamlined by either removing the
checkExistAdmin evaluation from deleteAdmin or introducing a new check in addAdmin that ensures the
_account being set as an administrator has not already been done so, the latter of which we advise.
Alleviation:
The code of both OwnableExt::addAdmin and OwnableExt::deleteAdmin was updated to properly
maintain the list of admins by ensuring they either do not exist or do exist in each case respectively
before applying the desired action.

Presale Code Style Findings
PEL-01C: Duplicate Application of Modifier

Type Severity Location

Gas Optimization Presale.sol:L142

Description:
The checkAddCollection modifier is applied by the isWhitelist function which is in turn invoked in the
getTokens and getTotalPriceCollection call-chains that both apply the checkAddCollection modifier.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/OwnableExt.sol#L32-L34
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/OwnableExt.sol#L39-L45
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
As isWhitelist represents an internal function, we advise the modifier to be safely omitted from it
optimizing the code's gas cost.
Alleviation:
The Presale::isWhitelist function was updated according to our recommendation, no longer applying
redundant access control by omitting the Airdrop::checkAddCollection modifier.

PEL-02C: Generic Typographic Mistake
Type Severity Location

Code Style Presale.sol:L143

Description:
The referenced line contains a typographical mistake (i.e. private variable without an underscore
prefix) or generic documentational error (i.e. copy-paste) that should be corrected.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Presale.sol#L138-L156
https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/Airdrop.sol#L40-L46
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We advise this to be done so to enhance the legibility of the codebase.
Alleviation:
The typographic mistake is no longer present in the codebase, rendering this exhibit alleviated.

PEL-03C: Inefficient Data Pointers
Type Severity Location

Gas Optimization Presale.sol:L233, L292

Description:
The referenced statements perform a memory assignment of the Collection struct whilst only few of its
members (whitelistPrice & publicPrice / erc20Address) are utilized within their respective functions.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise the assignments to be set as storage ones instead, optimizing each code's gas cost
significantly.
Alleviation:
Only the latter of the two referenced declarations was optimized, rendering this exhibit partially
alleviated.

PEL-04C: Inefficient mapping Lookups
Type Severity Location

Gas Optimization Presale.sol:L147, L150, L214, L216, L241,
L243, L245

Description:
The linked statements perform key-based lookup operations on mapping declarations from storage
multiple times for the same key redundantly.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be
cached wherever possible to a single local declaration that either holds the value of the mapping in
case of primitive types or holds a storage pointer to the struct contained.
Alleviation:
Only the highlighted section of the referenced declarations has been optimized, rendering this
exhibit partially alleviated.

PEL-05C: Inexistent Specification of Override
Type Severity Location

Code Style Presale.sol:L64

Description:
The referenced function overrides the parent implementation Airdrop::addCollection yet does not
specify it explicitly.

Recommendation:
We advise the override keyword to be properly introduced to the function declaration, optimizing the
legibility of the codebase.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Alleviation:
The 10101 Art team has opted to not apply a remediation for this exhibit instead acknowledging it.

PEL-06C: Loop Iterator Optimization
Type Severity Location

Gas Optimization Presale.sol:L269

Description:
The linked for loop increments / decrements the iterator "safely" due to Solidity's built-in safe
arithmetics(post - 0.8.X).

Recommendation:
We advise the increment / decrement operation to be performed in an unchecked code block as the
last statement within the for loop to optimize its execution cost.
Alleviation:
The referenced iterator has been optimized as advised, wrapping it in an unchecked code block
during increments.
PEL-07C: Redundant Conditional Structure

Type Severity Location

Gas Optimization Presale.sol:L145-L153, L155

Description:
The referenced conditional structure will evaluate a condition, return true to the caller if it succeeds
and false otherwise.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise the condition to be yielded to the caller directly optimizing the code's gas cost.
Alleviation:
The conditional structure has been simplified to a direct return statement of a boolean evaluation as
advised.

SafeMath Code Style Findings
SMH-01C: Incorrect Usage of Dependency

Type Severity Location

Gas Optimization SafeMath.sol:L2, L17

Description:
The SafeMath dependency the codebase utilizes is meant for pragma versions of 0.7.X and below as it
does not take into account the built-in safe arithmetics that are toggled on by default in pragma
versions 0.8.0 and up.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise the SafeMath library to be omitted entirely from the codebase as it is no longer necessary
and incurs extra gas cost at no benefit.
Alleviation:
The relevant file of the exhibit has been removed from the codebase rendering it no longer
applicable.

WhitelistContractFilter Code Style Findings
WCF-01C: Inefficient mapping Lookups

Type Severity Location

Gas Optimization WhitelistContractFilter.sol:L97-L99, L122-L124

Description:
The linked statements perform key-based lookup operations on mapping declarations from storage
multiple times for the same key redundantly.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be
cached wherever possible to a single local declaration that either holds the value of the mapping in
case of primitive types or holds a storage pointer to the struct contained.
Alleviation:
While both instances contain a local variable that points to the relevant mapping entry, they do so
inefficiently as the variable is declared within the for loop bodies. We advise the declarations to be
relocated outside the for loop that iterates through each inner-level filter of a higher-level filter,
optimizing the code significantly.

WCF-02C: Loop Iterator Optimizations
Type Severity Location

Gas Optimization WhitelistContractFilter.sol:L91, L94, L116, L119,
L141, L157

Description:
The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe
arithmetics(post - 0.8.X).

Recommendation:
We advise the increment / decrement operations to be performed in an unchecked code block as the
last statement within each for loop to optimize their execution cost.
Alleviation:
All iterator increment statements have been updated, incrementing each iterator within an unchecked
block optimally.

WCF-03C: Redundant Duplication of Code
Type Severity Location

Code Style WhitelistContractFilter.sol:L204-L206

Description:
The referenced code is meant to be implemented by the Address contract present in the codebase.

https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#code-style

Recommendation:
We advise it to be properly imported into the code and its isContract function to be utilized,
minimizing code duplication and inconsistencies.
Alleviation:
The WhitelistContractFilter::isContract function has been omitted from the contract and is no longer
in use, rendering this exhibit indirectly alleviated.

WCF-04C: Simplification of Ternary Operators
erity ation

Optimization elistContractFilter.sol:L184-L187, L199-L20

Description:
The ternary operators in use by the codebase are redundant and can be omitted by adjusting the
conditionals they are used in.

https://github.com/10101-art/smart-contracts/blob/72bec452a7767c3a9b204001983d31dd3c7fdd9b/contracts/WhitelistContractFilter.sol#L204-L206
https://omniscia.io/reports/10101-art-nft-marketplace-63f2033fca2e950014cb9589/appendix/finding-types#gas-optimization

Recommendation:
We advise this to be done so, optimizing the code's legibility as well as gas cost. As an example,
the ternary operator in isApprovalContractAccount can be adjusted to !activeFilter ||
!isContract(contractAccount) || isExistApprovalContractAccount(element, contractAccount) as it is equivalent
and clearly depicts that if the filter is not active or the contractAccount does not represent a contract
no check needs to be performed.
Alleviation:
The redundant ternary operators have been simplified to a single logical clause, optimizing the
code's legibility as well as gas cost.

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central
audit methodology we will publish soon.
Input Sanitization
As there are no inherent guarantees to the inputs a function accepts, a set of guards should always
be in place to sanitize the values passed in to a particular function.
Indeterminate Code
These types of issues arise when a linked code segment may not behave as expected, either due
to mistyped code, convoluted if blocks, overlapping functions / variable names and other ambiguous
statements.
Language Specific
Language specific issues arise from certain peculiarities that the Circom language boasts that
discerns it from other conventional programming languages.
Curve Specific
Circom defaults to using the BN128 scalar field (a 254-bit prime field), but it also supports
BSL12-381 (which has a 255-bit scalar field) and Goldilocks (with a 64-bit scalar field). However,
since there are no constants denoting either the prime or the prime size in bits available in the
Circom language, some Circomlib templates like Sign (which returns the sign of the input signal),
and AliasCheck (used by the strict versions of Num2Bits and Bits2Num), hardcode either the BN128
prime size or some other constant related to BN128. Using these circuits with a custom prime may
thus lead to unexpected results and should be avoided.
Code Style
In these types of findings, we identify whether a project conforms to a particular naming convention
and whether that convention is consistent within the codebase and legible. In case of
inconsistencies, we point them out under this category. Additionally, variable shadowing falls under
this category as well which is identified when a local-level variable contains the same name as a
toplevel variable in the circuit.
Mathematical Operations
This category is used when a mathematical issue is identified. This implies an issue with the
implementation of a calculation compared to the specifications.
Logical Fault
This category is a bit broad and is meant to cover implementations that contain flaws in the way
they are implemented, either due to unimplemented functionality, unaccounted-for edge cases or
similar extraordinary scenarios.
Privacy Concern
This category is used when information that is meant to be kept private is made public in some way.
Proof Concern
Under-constrained signals are one of the most common issues in zero-knowledge circuits. Issues
with proof generation fall under this category.

Disclaimer
The following disclaimer applies to all versions of the audit report produced (preliminary / public /
private) and is in effect for all past, current, and future audit reports that are produced and hosted
under Omniscia:

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY AUDITS/REVIEWS/REPORTS AND ALL
PUBLIC/PRIVATE CONTENT/DELIVERABLES
Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and
highlight any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the
codebase that were provided for the scope of this Engagement.
Blockchain technology and the cryptographic assets it supports are nascent technologies. This
makes them extremely volatile assets. Any assessment report obtained on such volatile and
nascent assets may include unpredictable results which may lead to positive or negative outcomes.
In some cases, services provided may be reliant on a variety of third parties. This security review
does not constitute endorsement, agreement or acceptance for the Project and technology that was
reviewed. Users relying on this security review should not consider this as having any merit for
financial advice or technological due diligence in any shape, form or nature.
The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no
guarantees, nor assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation
of technologies or any system / economical / mathematical malfunction.
This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on
any objective, goal or justification without due written assent, acquiescence or approval by
Omniscia.
All the information/opinions/suggestions provided in this report does not constitute financial or
investment advice, nor should it be used to signal that any person reading this report should invest
their funds without sufficient individual due diligence regardless of the findings presented in this
report.
Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness,
accuracy or solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack
vectors/surface and the high level of variance associated with utilizing new and consistently
changing technologies.
Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the
technology that was in scope for this security review.
In no event will Omniscia, its partners, employees, agents or any parties related to the
design/creation of this security review be ever liable to any parties for, or lack thereof, decisions
and/or actions with regards to the information provided in this security review.
Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence
and/or safeguards may be insufficient and users should exercise maximum caution when
participating and/or investing in this nascent industry.
The preparation of this security review has made all reasonable attempts to provide clear and
actionable recommendations to the Project team (the “client”) with respect to the rectification,
amendment and/or revision of any highlighted issues, vulnerabilities or exploits within the contracts
in scope for this engagement.
It is the sole responsibility of the Project team to provide adequate levels of test and perform the
necessary checks to ensure that the contracts are functioning as intended, and more specifically to
ensure that the functions contained within the contracts in scope have the desired intended effects,
functionalities and outcomes, as documented by the Project team.
All services, the security reports, discussions, work product, attack vectors description or any other
materials, products or results of this security review engagement is provided "as is" and "as
available" and with all faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of
content, suggestions, materials or for any loss, delay, damage of any kind which arose as a result of
this engagement/security review.
Omniscia will assume no liability or responsibility for any personal injury, property damage, of any
kind whatsoever that resulted in this engagement and the customer having access to or use of the
products, engineers, services, security report, or any other other materials.
For avoidance of doubt, this report, its content, access, and/or usage thereof, including any
associated services or materials, shall not be considered or relied upon as any form of financial,
investment, tax, legal, regulatory, or any other type of advice.
 EXTERNAL SOURCES
 Source Code

https://github.com/10101-art/smart-contracts/tree/72bec452a7767c3a9b204001983d31dd3c7fdd9b

